Contents

Pre	eface	xiii
Pre	eface to the Second Edition	XV
At	pout the Authors	xvii
No	omenclature	xix
Chapter 1	Introduction to Petroleum Reservoirs and Reservoir Engine	ering 1
1.1	Introduction to Petroleum Reservoirs	1
1.2	History of Reservoir Engineering	4
1.3	Introduction to Terminology	7
1.4	Reservoir Types Defined with Reference to Phase Diagrams	9
1.5	Production from Petroleum Reservoirs	13
1.6	Peak Oil	14
Probl	lems	18
Refe	rences	19
Chapter 2	Review of Rock and Fluid Properties	21
2.1	Introduction	21
2.2	Review of Rock Properties	21
2.2	2.1 Porosity	22
2.2	2.2 Isothermal Compressibility	22
2.2	2.3 Fluid Saturations	24
2.3	Review of Gas Properties	24
2.3	3.1 Ideal Gas Law	24
2.3	3.2 Specific Gravity	25
2.3	3.3 Real Gas Law	26
2.3	3.4 Formation Volume Factor and Density	34
2.3	3.5 Isothermal Compressibility	35
2.3	3.6 Viscosity	41

2.4 Review of Crude Oil Properties	44
2.4.1 Solution Gas-Oil Ratio, R_{so}	44
2.4.2 Formation Volume Factor, B_{a}	47
2.4.3 Isothermal Compressibility	51
2.4.4 Viscosity	54
2.5 Review of Reservoir Water Properties	61
2.5.1 Formation Volume Factor	61
2.5.2 Solution Gas-Water Ratio	61
2.5.3 Isothermal Compressibility	62
2.5.4 Viscosity	63
2.6 Summary	64
Problems	64
References	69
Chapter 3 The General Material Balance Equation	73
3.1 Introduction	73
3.2 Derivation of the Material Balance Equation	73
3.3 Uses and Limitations of the Material Balance Method	81
3.4 The Havlena and Odeh Method of Applying	
the Material Balance Equation	83
References	85
Chapter 4 Single-Phase Gas Reservoirs	87
4.1 Introduction	87
4.2 Calculating Hydrocarbon in Place Using Geological,	
Geophysical, and Fluid Property Data	88
4.2.1 Calculating Unit Recovery from Volumetric Gas Reservoirs	91
4.2.2 Calculating Unit Recovery from	
Gas Reservoirs under Water Drive	93
4.3 Calculating Gas in Place Using Material Balance	98
4.3.1 Material Balance in Volumetric Gas Reservoirs	98
4.3.2 Material Balance in Water-Drive Gas Reservoirs	100
4.4 The Gas Equivalent of Produced Condensate and Water	105
4.5 Gas Reservoirs as Storage Reservoirs	107

Contents	5
----------	---

4.6	Abnormally Pressured Gas Reservoirs	110
4.7	Limitations of Equations and Errors	112
Pro	blems	113
Ref	erences	118
Chapter	5 Gas-Condensate Reservoirs	121
5.1	Introduction	121
5.2	Calculating Initial Gas and Oil	124
5.3	The Performance of Volumetric Reservoirs	131
5.4	Use of Material Balance	140
5.5	Comparison between the Predicted and Actual	
	Production Histories of Volumetric Reservoirs	143
5.6	Lean Gas Cycling and Water Drive	147
5.7	Use of Nitrogen for Pressure Maintenance	152
Pro	blems	153
Ref	erences	157
Chanter	6 Undersaturated Oil Reservoirs	150
6 1	Introduction	159
0.1	5.1.1 Oil Reservoir Fluids	159
62	Calculating Oil in Place and Oil Recoveries Using	157
0.2	Geological Geophysical and Fluid Property Data	162
63	Material Balance in Undersaturated Reservoirs	162
6.4	Kelly-Snyder Field Canyon Reef Reservoir	171
6.5	The Glovd-Mitchell Zone of the Rodessa Field	177
6.6	Calculations, Including Formation and Water Compressibilities	184
Pro	blems	191
Ref	erences	197
Chapter	7 Saturated Oil Reservoirs	199
7.1	Introduction	199
7	7.1.1 Factors Affecting Overall Recovery	199
7.2	Material Balance in Saturated Reservoirs	200
-	7.2.1 The Use of Drive Indices in Material Balance Calculations	202

ix

Contents	5
----------	---

7	7.3	Ma	terial Balance as a Straight Line	206
7	7.4	The	Effect of Flash and Differential Gas Liberation Techniques	
		and	I Surface Separator Operating Conditions on Fluid Properties	209
7	7.5	The	e Calculation of Formation Volume Factor and Solution	
		Gas	s-Oil Ratio from Differential Vaporization and Separator Tests	215
7	7.6	Vol	atile Oil Reservoirs	217
7	7.7	Ma	ximum Efficient Rate (MER)	218
I	Prob	lems	3	220
I	Refe	renc	es	224
Chap	ter 8	8 S	ingle-Phase Fluid Flow in Reservoirs	227
8	3.1	Intr	oduction	227
8	3.2	Dar	cy's Law and Permeability	227
8	3.3	The	e Classification of Reservoir Flow Systems	232
8	3.4	Stea	ady-State Flow	236
	8.	4.1	Linear Flow of Incompressible Fluids, Steady State	236
	8.	4.2	Linear Flow of Slightly Compressible Fluids, Steady State	237
	8.	4.3	Linear Flow of Compressible Fluids, Steady State	238
	8.	4.4	Permeability Averaging in Linear Systems	242
	8.	4.5	Flow through Capillaries and Fractures	244
	8.	4.6	Radial Flow of Incompressible Fluids, Steady State	246
	8.4.7		Radial Flow of Slightly Compressible Fluids, Steady State	247
	8.	4.8	Radial Flow of Compressible Fluids, Steady State	248
	8.	4.9	Permeability Averages for Radial Flow	249
8	3.5	Dev	velopment of the Radial Diffusivity Equation	251
8	8.6	Tra	nsient Flow	253
	8.	6.1	Radial Flow of Slightly Compressible Fluids, Transient Flow	254
	8.	6.2	Radial Flow of Compressible Fluids, Transient Flow	260
8	3.7	Pse	udosteady-State Flow	261
	8.	7.1	Radial Flow of Slightly Compressible Fluids,	
			Pseudosteady-State Flow	262
	8.	7.2	Radial Flow of Compressible Fluids, Pseudosteady-State Flow	264
8	8.8	Pro	ductivity Index (PI)	264
	8.	8.1	Productivity Ratio (PR)	266

х

Contents

8.9 Superposition	267
8.9.1 Superposition in Bounded or Partially Bounded Reservoirs	270
8.10 Introduction to Pressure Transient Testing	272
8.10.1 Introduction to Drawdown Testing	272
8.10.2 Drawdown Testing in Pseudosteady-State Regime	273
8.10.3 Skin Factor	274
8.10.4 Introduction to Buildup Testing	277
Problems	282
References	292
Chapter 9 Water Influx	295
9.1 Introduction	295
9.2 Steady-State Models	297
9.3 Unsteady-State Models	302
9.3.1 The van Everdingen and Hurst Edgewater Drive Model	303
9.3.2 Bottomwater Drive	323
9.4 Pseudosteady-State Models	346
Problems	350
References	356
Chapter 10 The Displacement of Oil and Gas	357
10.1 Introduction	357
10.2 Recovery Efficiency	357
10.2.1 Microscopic Displacement Efficiency	357
10.2.2 Relative Permeability	359
10.2.3 Macroscopic Displacement Efficiency	365
10.3 Immiscible Displacement Processes	369
10.3.1 The Buckley-Leverett Displacement Mechanism	369
10.3.2 The Displacement of Oil by Gas, with and without	
Gravitational Segregation	376
10.3.3 Oil Recovery by Internal Gas Drive	382
10.4 Summary	399
Problems	399
References	402

xi

Contents

Chapter 11 Enhanced Oil Recovery	405
11.1 Introduction	405
11.2 Secondary Oil Recovery	406
11.2.1 Waterflooding	406
11.2.2 Gasflooding	411
11.3 Tertiary Oil Recovery	412
11.3.1 Mobilization of Residual Oil	412
11.3.2 Miscible Flooding Processes	414
11.3.3 Chemical Flooding Processes	421
11.3.4 Thermal Processes	427
11.3.5 Screening Criteria for Tertiary Processes	431
11.4 Summary	433
Problems	434
References	434
Chapter 12 History Matching	437
12.1 Introduction	437
12.2 History Matching with Decline-Curve Analysis	438
12.3 History Matching with the Zero-Dimensional	
Schilthuis Material Balance Equation	441
12.3.1 Development of the Model	441
12.3.2 The History Match	443
12.3.3 Summary Comments Concerning History-Matching Example	465
Problems	466
References	471
Glossary	473
Index	481